Streamlit UI showing stock movement prediction result

πŸ“ˆ Real-Time Stock Movement Predictor using SVM + Streamlit

πŸš€ Try the Live Demo
πŸ‘‰ Live App
🧠 GitHub Repo

πŸ“Έ Project in Action
UI:

Streamlit UI showing stock movement prediction result

Model Evaluation:

Confusion matrix showing UP/DOWN prediction accuracy

πŸ’‘ What Does This App Do?

It predicts whether a stock’s next-day movement will be:

πŸ“ˆ UP or πŸ“‰ DOWN

You simply:

Choose a stock (AAPL, MSFT, TSLA, etc.)
Click β€œPredict”
See the next-day prediction powered by an SVM model

πŸ”§ How It Works

βœ… Features Used:

Past 3-day returns
Short & Long moving averages
Momentum = short βˆ’ long
Volatility (rolling std dev)
Ticker encoded as a feature

πŸ“Š Model:

SVM classifier trained on 3 years of daily data (from Yahoo Finance)
Achieved ~99% test accuracy 🎯

πŸ› οΈ Tech Stack

Component Tool / Library
Model Scikit-learn (SVM)
Data Source yfinance (Yahoo Finance API)
Frontend Streamlit
Feature Engg pandas, NumPy
Visualization seaborn, matplotlib

πŸ“ Project Structure

stock-movement-svm/
β”œβ”€β”€ app.py # Streamlit frontend + logic
β”œβ”€β”€ model.pkl # Trained SVM model
β”œβ”€β”€ scaler.pkl # Feature scaler
β”œβ”€β”€ generate_features.py # Feature generation logic
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ screenshots/
β”‚ β”œβ”€β”€ screenshot-ui.png
β”‚ └── confusion-matrix.png
└── README.md

πŸ”Œ Run Locally

git clone https://github.com/snoorbasha50/stock-movement-svm.git
cd stock-movement-svm
pip install -r requirements.txt
streamlit run app.py

πŸ” Future Enhancements

Add more stocks dynamically
Include candlestick chart visualizations
Fine-tune SVM hyperparameters
Try LSTM or deep learning for sequence modeling

πŸ“¬ Let’s Connect

πŸ’Ό LinkedIn
🌐 GitHub

Similar Posts