AWS EKS Enterprise Deployment: Real-Time Data Streaming Platform – 1 Million Events/Sec

When your business processes millions of events per second – think major e-commerce platforms during Black Friday, global payment processors, or IoT fleets with millions of devices – you need infrastructure that doesn’t just scale, but performs flawlessly under extreme load.

In this guide, I’ll show you how to deploy an enterprise-grade event streaming platform on AWS EKS that handles 1 million events per second using high-performance compute instances, NVMe storage, and battle-tested architectural patterns.

🎯 What We’re Building

An enterprise-scale streaming platform that:

  • ⚑ Processes 1,000,000+ events per second in real-time
  • πŸš€ Uses high-performance instances (c5.4xlarge, i7i.8xlarge, r6id.4xlarge)
  • πŸ’Ύ Leverages NVMe SSD storage for ultra-low latency
  • ☁️ Runs on AWS EKS with production-grade HA
  • 🌍 Supports multi-domain: E-commerce, Finance, IoT, Gaming at scale
  • ⏱️ Delivers sub-second latency end-to-end
  • πŸ“Š Includes enterprise monitoring with Grafana
  • πŸ”„ Provides exactly-once processing guarantees
  • πŸ’° AWS infrastructure cost: ~$24,592/month (with reserved instances)

πŸ’° Enterprise Infrastructure Investment

AWS Infrastructure Cost: ~$24,592/month

This enterprise-grade investment includes high-performance compute instances (c5.4xlarge, i7i.8xlarge, r6id.4xlarge), NVMe SSD storage, multi-AZ deployment, enterprise monitoring, and all supporting AWS services required for processing 1 million events per second with production-grade reliability.

Why enterprise instances?

  • i7i.8xlarge: NVMe SSD for Pulsar (ultra-low latency message storage)
  • r6id.4xlarge: NVMe SSD for ClickHouse (blazing-fast analytics)
  • c5.4xlarge: High-performance compute for Flink processing & event generation
  • Enterprise HA: Multi-AZ deployment, replication, auto-scaling

πŸ—οΈ Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  AWS EKS Cluster (us-west-2)                     β”‚
β”‚              benchmark-high-infra (k8s 1.31)                     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚   PRODUCER      │──▢│     PULSAR       │──▢│    FLINK     β”‚ β”‚
β”‚  β”‚  c5.4xlarge     β”‚   β”‚  i7i.8xlarge     β”‚   β”‚ c5.4xlarge   β”‚ β”‚
β”‚  β”‚                 β”‚   β”‚                  β”‚   β”‚              β”‚ β”‚
β”‚  β”‚ 4 nodes         β”‚   β”‚ ZK + 6 Brokers   β”‚   β”‚ JM + 6 TMs   β”‚ β”‚
β”‚  β”‚ Java/AVRO       β”‚   β”‚ NVMe Storage     β”‚   β”‚ 1M evt/sec   β”‚ β”‚
β”‚  β”‚ 250K evt/sec    β”‚   β”‚ 3.6TB NVMe       β”‚   β”‚ Checkpoints  β”‚ β”‚
β”‚  β”‚ 100K devices    β”‚   β”‚ Ultra-low lat    β”‚   β”‚ Aggregation  β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                                                        β”‚         β”‚
β”‚                         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜         β”‚
β”‚                         β–Ό                                        β”‚
β”‚                  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                           β”‚
β”‚                  β”‚   CLICKHOUSE     β”‚                           β”‚
β”‚                  β”‚  r6id.4xlarge    β”‚                           β”‚
β”‚                  β”‚                  β”‚                           β”‚
β”‚                  β”‚  6 Data Nodes    β”‚                           β”‚
β”‚                  β”‚  1 Query Node    β”‚                           β”‚
β”‚                  β”‚  NVMe + EBS      β”‚                           β”‚
β”‚                  β”‚  10K+ queries/s  β”‚                           β”‚
β”‚                  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                           β”‚
β”‚                                                                  β”‚
β”‚  Supporting: VPC, Multi-AZ, S3, ECR, IAM, Auto-scaling         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Tech Stack:

  • Kubernetes: AWS EKS 1.31 (Multi-AZ, HA)
  • Message Broker: Apache Pulsar 3.1 (NVMe-backed)
  • Stream Processing: Apache Flink 1.18 (Exactly-once)
  • Analytics DB: ClickHouse 24.x (NVMe + EBS)
  • Storage: NVMe SSD (3.6TB) + EBS gp3
  • Infrastructure: Terraform
  • Monitoring: Grafana + Prometheus + VictoriaMetrics

πŸ“‹ Prerequisites

# Install required tools
brew install awscli terraform kubectl helm

# Configure AWS with admin-level access
aws configure
# Enter credentials for production account

# Verify versions
terraform --version  # >= 1.6.0
kubectl version      # >= 1.28.0
helm version         # >= 3.12.0

AWS Requirements:

  • Admin access to AWS account
  • Budget: ~$25,000-33,000/month
  • Region: us-west-2 (or your preferred region)
  • Service limits increased for:
    • EKS clusters
    • EC2 instances (especially i7i.8xlarge, r6id.4xlarge)
    • EBS volumes
    • Elastic IPs

πŸš€ Step-by-Step Deployment

Step 1: Clone Repository & Review Configuration

git clone https://github.com/hyperscaledesignhub/RealtimeDataPlatform.git
cd RealtimeDataPlatform/realtime-platform-1million-events

# Review configuration
cat terraform.tfvars

Repository structure:

realtime-platform-1million-events/
β”œβ”€β”€ terraform/                # Enterprise AWS infrastructure
β”œβ”€β”€ producer-load/            # High-volume event generation
β”œβ”€β”€ pulsar-load/              # Apache Pulsar (NVMe-backed)
β”œβ”€β”€ flink-load/               # Apache Flink enterprise processing
β”œβ”€β”€ clickhouse-load/          # ClickHouse analytics cluster
└── monitoring/               # Enterprise monitoring stack

Key Configuration:

# terraform.tfvars
cluster_name = "benchmark-high-infra"
aws_region = "us-west-2"
environment = "production"

# High-performance node groups
producer_desired_size = 4          # c5.4xlarge
pulsar_zookeeper_desired_size = 3  # t3.medium
pulsar_broker_desired_size = 6     # i7i.8xlarge (NVMe)
flink_taskmanager_desired_size = 6 # c5.4xlarge
clickhouse_desired_size = 6        # r6id.4xlarge (NVMe)

# Enable all services
enable_flink = true
enable_pulsar = true
enable_clickhouse = true
enable_general_nodes = true

Step 2: Deploy AWS Infrastructure with Terraform

# Initialize Terraform
terraform init

# Review infrastructure plan (~$24K-33K/month)
terraform plan

# Deploy infrastructure (takes ~20-25 minutes)
terraform apply -auto-approve

What gets created:

Network Layer:

  • βœ… VPC with Multi-AZ subnets (10.1.0.0/16)
  • βœ… 2 NAT Gateways (high availability)
  • βœ… Internet Gateway
  • βœ… Route tables and security groups

EKS Cluster:

  • βœ… Kubernetes 1.31 cluster
  • βœ… Control plane with HA
  • βœ… IRSA (IAM Roles for Service Accounts)
  • βœ… Logging enabled (API, Audit, Authenticator)

Node Groups (9 total):

  1. Producer: c5.4xlarge Γ— 4 nodes
  2. Pulsar ZK: t3.medium Γ— 3 nodes
  3. Pulsar Broker-Bookie: i7i.8xlarge Γ— 6 nodes (3.6TB NVMe)
  4. Pulsar Proxy: t3.medium Γ— 2 nodes
  5. Flink JobManager: c5.4xlarge Γ— 1 node
  6. Flink TaskManager: c5.4xlarge Γ— 6 nodes
  7. ClickHouse Data: r6id.4xlarge Γ— 6 nodes (1.9TB NVMe each)
  8. ClickHouse Query: r6id.2xlarge Γ— 1 node
  9. General: t3.medium Γ— 4 nodes

Storage & Services:

  • βœ… S3 bucket for Flink checkpoints
  • βœ… ECR repositories for container images
  • βœ… EBS CSI driver
  • βœ… IAM roles and policies
  • βœ… CloudWatch log groups

Configure kubectl:

aws eks update-kubeconfig --region us-west-2 --name benchmark-high-infra

# Verify cluster
kubectl get nodes
# Should see ~30 nodes across all groups

Step 3: Deploy Apache Pulsar (High-Performance Message Broker)

cd pulsar-load

# Deploy Pulsar with NVMe storage
./deploy.sh

# Monitor deployment (~10-15 minutes for all components)
kubectl get pods -n pulsar -w

What this deploys:

ZooKeeper (Metadata Management):

  • 3 replicas on t3.medium
  • Cluster coordination and metadata

Broker-BookKeeper (Combined – NVMe):

  • 6 replicas on i7i.8xlarge instances
  • Each node: 600GB NVMe SSD (total 3.6TB)
  • Message routing + persistence
  • Ultra-low latency (~1ms writes)

Proxy (Load Balancing):

  • 2 replicas on t3.medium
  • Client connection management

Monitoring Stack:

  • Grafana dashboards
  • VictoriaMetrics for metrics
  • Prometheus exporters

Verify Pulsar cluster:

# Check all components are running
kubectl get pods -n pulsar

# Test Pulsar functionality
kubectl exec -n pulsar pulsar-broker-0 -- 
  bin/pulsar-admin topics create persistent://public/default/test-topic

# Verify topic creation
kubectl exec -n pulsar pulsar-broker-0 -- 
  bin/pulsar-admin topics list public/default

Step 4: Deploy ClickHouse (Enterprise Analytics Database)

cd ../clickhouse-load

# Install ClickHouse operator and enterprise cluster
./00-install-clickhouse.sh

# Wait for ClickHouse cluster (~5-8 minutes)
kubectl get pods -n clickhouse -w

# Create enterprise database schema
./00-create-schema-all-replicas.sh

ClickHouse Enterprise Setup:

  • 6 Data Nodes: r6id.4xlarge with NVMe SSD
  • 1 Query Node: r6id.2xlarge for complex analytics
  • Database: benchmark
  • Table: sensors_local (optimized for high-throughput writes)
  • Storage: NVMe SSD + EBS gp3 (enterprise performance)
  • Replication: 2x across availability zones

Enterprise Schema Example:

-- High-performance sensor data table using AVRO schema
CREATE TABLE IF NOT EXISTS benchmark.sensors_local ON CLUSTER iot_cluster (
    sensorId Int32,
    sensorType Int32,
    temperature Float64,
    humidity Float64,
    pressure Float64,
    batteryLevel Float64,
    status Int32,
    timestamp DateTime64(3),
    event_time DateTime64(3) DEFAULT now64()
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/{cluster}/sensors_local', '{replica}')
PARTITION BY toYYYYMM(timestamp)
ORDER BY (sensorId, timestamp)
SETTINGS index_granularity = 8192;

Test ClickHouse cluster:

# Connect to ClickHouse cluster
kubectl exec -it -n clickhouse chi-iot-cluster-repl-iot-cluster-0-0-0 -- clickhouse-client

# Test cluster connectivity
SELECT * FROM system.clusters WHERE cluster = 'iot_cluster';

# Exit with Ctrl+D

Step 5: Deploy Apache Flink (Enterprise Stream Processing)

cd ../flink-load

# Build and push enterprise Flink image to ECR
./build-and-push.sh

# Deploy Flink enterprise cluster
./deploy.sh

# Submit high-throughput Flink job
kubectl apply -f flink-job-deployment.yaml

# Monitor Flink deployment (~3-5 minutes)
kubectl get pods -n flink-benchmark -w

Enterprise Flink Setup:

  • JobManager: c5.4xlarge Γ— 1 (job coordination)
  • TaskManager: c5.4xlarge Γ— 6 (parallel processing)
  • Parallelism: 48 (8 slots Γ— 6 TaskManagers)
  • Checkpointing: Every 1 minute to S3
  • State Backend: RocksDB with NVMe storage

Flink Job Configuration:

// Enterprise-grade stream processing using SensorData AVRO schema
DataStream<SensorRecord> sensorStream = env.fromSource(
    pulsarSource,
    WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5)),
    "Pulsar Enterprise IoT Source"
);

// High-throughput processing with 1-minute windows
sensorStream
    .keyBy(record -> record.getSensorId())
    .window(TumblingEventTimeWindows.of(Time.minutes(1)))
    .aggregate(new EnterpriseAggregator())
    .addSink(new ClickHouseJDBCSink(clickhouseUrl));

Step 6: Deploy High-Volume IoT Producer

cd ../producer-load

# Build and deploy enterprise producer
./deploy.sh

# Scale to generate 1M events/sec (4 nodes Γ— 250K each)
kubectl scale deployment iot-producer -n iot-pipeline --replicas=100

# Monitor producer performance
kubectl get pods -n iot-pipeline -l app=iot-producer

Enterprise Producer Capabilities:

  • Throughput: 250,000 events/sec per pod
  • Scale: 100+ pods for 1M+ events/sec
  • AVRO Schema: Enterprise SensorData with optimized integers
  • Device Simulation: 100,000 unique device IDs
  • Realistic Patterns: Battery drain, temperature variations, device lifecycle

πŸ“Š Step 7: Verify Enterprise Performance

After all components are deployed (~25-30 minutes total), verify 1M events/sec performance:

# Monitor producer throughput
kubectl logs -n iot-pipeline -l app=iot-producer --tail=20 | grep "Events produced"

# Check Pulsar message ingestion rate
kubectl exec -n pulsar pulsar-broker-0 -- 
  bin/pulsar-admin topics stats persistent://public/default/iot-sensor-data

# Verify Flink processing rate
kubectl logs -n flink-benchmark deployment/iot-flink-job --tail=20

# Query ClickHouse for ingestion rate
kubectl exec -n clickhouse chi-iot-cluster-repl-iot-cluster-0-0-0 -- 
  clickhouse-client --query "
    SELECT 
        toStartOfMinute(timestamp) as minute,
        COUNT(*) as events_per_minute
    FROM benchmark.sensors_local 
    WHERE timestamp >= now() - INTERVAL 5 MINUTE
    GROUP BY minute 
    ORDER BY minute DESC"

Expected Performance Metrics:

βœ… Producer: 1,000,000+ events/sec generation
βœ… Pulsar: Ultra-low latency message ingestion (~1ms)
βœ… Flink: Real-time processing with exactly-once guarantees
βœ… ClickHouse: High-speed data ingestion and sub-second queries
βœ… End-to-end latency: < 2 seconds (p99)

πŸ” Enterprise Monitoring and Analytics

Access Enterprise Grafana Dashboard

# Set up secure port forwarding
kubectl port-forward -n pulsar svc/grafana 3000:3000 &

# Open enterprise dashboard
open http://localhost:3000
# Login: admin/admin

Enterprise Dashboards:

  • Platform Overview: System health, throughput, latency
  • Pulsar Metrics: Message rates, storage usage, replication lag
  • Flink Metrics: Job health, checkpoint duration, backpressure
  • ClickHouse Metrics: Query performance, replication status, storage
  • Infrastructure: CPU, memory, disk I/O, network across all nodes

Enterprise Analytics Queries

-- Connect to ClickHouse enterprise cluster
kubectl exec -it -n clickhouse chi-iot-cluster-repl-iot-cluster-0-0-0 -- clickhouse-client

-- Enterprise-scale analytics using our SensorData AVRO schema
USE benchmark;

-- Real-time throughput monitoring
SELECT 
    toStartOfMinute(timestamp) as minute,
    COUNT(*) as events_per_minute,
    COUNT(DISTINCT sensorId) as unique_sensors,
    AVG(temperature) as avg_temp,
    AVG(batteryLevel) as avg_battery
FROM sensors_local
WHERE timestamp >= now() - INTERVAL 1 HOUR
GROUP BY minute
ORDER BY minute DESC
LIMIT 60;

-- Enterprise anomaly detection
SELECT 
    sensorId,
    sensorType,
    temperature,
    batteryLevel,
    status,
    timestamp
FROM sensors_local
WHERE (temperature > 40.0 OR batteryLevel < 15.0 OR status != 1)
  AND timestamp >= now() - INTERVAL 10 MINUTE
ORDER BY timestamp DESC
LIMIT 100;

-- High-performance aggregations across millions of records
SELECT 
    sensorType,
    COUNT(*) as total_readings,
    AVG(temperature) as avg_temp,
    percentile(0.95)(temperature) as p95_temp,
    AVG(humidity) as avg_humidity,
    MIN(batteryLevel) as min_battery,
    MAX(batteryLevel) as max_battery
FROM sensors_local
WHERE timestamp >= today() - INTERVAL 1 DAY
GROUP BY sensorType
ORDER BY total_readings DESC;

-- Enterprise time-series analysis
SELECT 
    toStartOfHour(timestamp) as hour,
    sensorType,
    COUNT(*) as hourly_count,
    AVG(temperature) as avg_temp,
    stddevPop(temperature) as temp_stddev
FROM sensors_local
WHERE timestamp >= now() - INTERVAL 24 HOUR
GROUP BY hour, sensorType
ORDER BY hour DESC, sensorType;

πŸ“ˆ Enterprise Performance Benchmarks

Real-World Enterprise Metrics

On this enterprise-grade setup, you achieve:

Metric Value Notes
Peak Throughput 1,000,000+ events/sec Sustained with room for 2M+
End-to-end Latency < 2 seconds (p99) Producer β†’ ClickHouse
Query Performance < 200ms Complex aggregations on 1B+ records
Write Latency < 1ms Pulsar NVMe storage
CPU Utilization 70-80% Optimized across all instances
Memory Efficiency ~85% High-memory instances (r6id)
Storage IOPS 50,000+ NVMe SSD performance
Availability 99.95%+ Multi-AZ enterprise deployment

Enterprise Use Cases Supported

E-Commerce at Scale:

  • Black Friday traffic: 10M+ orders/hour
  • Real-time inventory across 1000+ warehouses
  • Personalization for 100M+ users
  • Fraud detection on every transaction

Financial Services:

  • High-frequency trading: microsecond latency
  • Risk calculations on 1M+ portfolios
  • Real-time compliance monitoring
  • Market data processing at scale

IoT Enterprise:

  • Fleet management: 1M+ connected vehicles
  • Smart city infrastructure: millions of sensors
  • Industrial IoT: factory-wide monitoring
  • Predictive maintenance at scale

πŸ› οΈ Enterprise Troubleshooting

High-Load Performance Issues

# Check node resource utilization
kubectl top nodes | sort -k3 -nr

# Identify resource bottlenecks
kubectl describe nodes | grep -A5 "Allocated resources"

# Scale TaskManagers for higher throughput
kubectl scale deployment flink-taskmanager -n flink-benchmark --replicas=12

# Monitor Flink backpressure
kubectl exec -n flink-benchmark <jobmanager-pod> -- 
  flink list -r

NVMe Storage Performance

# Check NVMe disk performance
kubectl exec -n pulsar pulsar-broker-0 -- 
  iostat -x 1 5

# Monitor ClickHouse storage usage
kubectl exec -n clickhouse chi-iot-cluster-repl-iot-cluster-0-0-0 -- 
  clickhouse-client --query "
    SELECT 
        name,
        total_space,
        free_space,
        (total_space - free_space) / total_space * 100 as usage_percent
    FROM system.disks"

Network Performance Optimization

# Check inter-pod network latency
kubectl exec -n pulsar pulsar-broker-0 -- 
  ping -c 5 flink-jobmanager.flink-benchmark.svc.cluster.local

# Monitor network bandwidth
kubectl exec -n flink-benchmark <taskmanager-pod> -- 
  iftop -t -s 10

🧹 Enterprise Cleanup

When decommissioning the enterprise setup:

# Graceful shutdown of applications
kubectl delete namespace iot-pipeline flink-benchmark

# Backup critical data before destroying infrastructure
./backup-clickhouse.sh
./backup-flink-savepoints.sh

# Destroy AWS infrastructure
terraform destroy
# Type 'yes' when prompted

# Verify all resources are cleaned up
aws ec2 describe-instances --region us-west-2 
  --filters "Name=tag:kubernetes.io/cluster/benchmark-high-infra,Values=owned"

⚠️ Enterprise Warning: Ensure all critical data is backed up before destruction!

πŸ’‘ Enterprise Best Practices

1. Cost Optimization with Reserved Instances

# Purchase 3-year reserved instances for 26% savings
# Target instances: i7i.8xlarge, r6id.4xlarge, c5.4xlarge

# AWS Console β†’ EC2 β†’ Reserved Instances β†’ Purchase
# - Term: 3 years
# - Payment: All upfront (max discount)
# - Instance type: i7i.8xlarge, r6id.4xlarge
# - Quantity: Match your desired_size

# Savings: $33,016 β†’ $24,592/month (26% off)

2. Enterprise Backup Strategy

# Automated EBS snapshots
aws backup create-backup-plan --backup-plan-name daily-snapshots

# ClickHouse enterprise backups to S3
clickhouse-backup create
clickhouse-backup upload

# Flink savepoints for exactly-once recovery
kubectl exec -n flink-benchmark <jm-pod> -- 
  flink savepoint <job-id> s3://benchmark-high-infra-state/savepoints

3. Enterprise Alerting

# CloudWatch Alarms for enterprise monitoring
- CPU > 80% sustained for 5 minutes
- Disk usage > 85%
- Pod crash loops > 3 in 10 minutes
- Flink checkpoint failures
- Pulsar consumer lag > 1M messages
- ClickHouse replication lag > 5 minutes

4. Disaster Recovery Implementation

Multi-Region Setup:

# Deploy identical stack in secondary region
aws_region = "us-east-1"
cluster_name = "benchmark-high-infra-dr"

# Use Pulsar geo-replication
bin/pulsar-admin namespaces set-clusters public/default 
  --clusters us-west-2,us-east-1

# ClickHouse cross-region replication
CREATE TABLE benchmark.sensors_replicated
ENGINE = ReplicatedMergeTree('/clickhouse/tables/{cluster}/sensors', '{replica}')
...

Enterprise Recovery Objectives:

  • RTO (Recovery Time Objective): < 1 hour
  • RPO (Recovery Point Objective): < 5 minutes
  • Automated daily backups to S3
  • Cross-region replication for critical data

5. Cost Monitoring and Governance

# Set up AWS Cost Explorer with enterprise tags
# Tag all resources:
# - Environment: production
# - Project: streaming-platform
# - Team: data-engineering
# - CostCenter: engineering

# Create enterprise budget alert
aws budgets create-budget --budget 
  --account-id 123456789 
  --budget-name streaming-platform-monthly 
  --budget-limit Amount=30000,Unit=USD

# Alert if cost > $30K/month

πŸŽ“ What You’ve Built

By following this guide, you’ve deployed:

βœ… Enterprise-grade infrastructure handling 1M events/sec

βœ… High-performance compute with NVMe storage

βœ… Exactly-once processing with Flink checkpointing

βœ… Multi-AZ high availability with auto-recovery

βœ… Production monitoring with Grafana dashboards

βœ… Auto-scaling for dynamic workloads

βœ… Security & compliance with encryption and RBAC

βœ… Cost optimization with reserved instances

πŸš€ Next Steps

1. Customize for Your Enterprise Domain

E-Commerce (High Scale):

// Order events at 1M/sec using AVRO schema
{
  "order_id": "ORD-1234567",
  "customer_id": "CUST-99999",
  "items": [...],
  "total_amount": 1299.99,
  "timestamp": "2025-10-26T10:00:00Z"
}

Finance (Trading):

// Market data at 1M/sec
{
  "symbol": "AAPL",
  "price": 175.50,
  "volume": 10000,
  "exchange": "NASDAQ", 
  "timestamp": "2025-10-26T10:00:00.123Z"
}

IoT (Massive Scale):

// Sensor telemetry from millions of devices
// Using our optimized SensorData AVRO schema
{
  "sensorId": 1000001,
  "sensorType": 1,  // temperature sensor
  "temperature": 24.5,
  "humidity": 68.2,
  "pressure": 1013.25,
  "batteryLevel": 87.5,
  "status": 1,  // online
  "timestamp": 1635254400123
}

2. Implement Advanced Enterprise Analytics

-- Real-time anomaly detection
CREATE MATERIALIZED VIEW anomaly_detection AS
SELECT 
    sensorId,
    AVG(temperature) as avg_temp,
    stddevPop(temperature) as stddev_temp,
    if(temperature > avg_temp + 3*stddev_temp, 1, 0) as is_anomaly
FROM benchmark.sensors_local
GROUP BY sensorId;

-- Enterprise windowed aggregations
CREATE MATERIALIZED VIEW hourly_metrics AS
SELECT 
    toStartOfHour(timestamp) as hour,
    sensorId,
    COUNT(*) as event_count,
    AVG(temperature) as avg_temp,
    MAX(temperature) as max_temp,
    MIN(temperature) as min_temp
FROM benchmark.sensors_local
GROUP BY hour, sensorId;

3. Add Machine Learning at Scale

# Real-time ML inference with Flink
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml import Pipeline, KMeans

# Load trained model
model = Pipeline.load('s3://models/anomaly-detection')

# Apply to 1M events/sec stream
predictions = sensor_stream.map(lambda x: model.predict(x))

4. Expand to Multi-Region Enterprise

# Deploy to additional regions for global presence
# us-west-2 (primary)
# us-east-1 (DR)
# eu-west-1 (Europe)
# ap-southeast-1 (Asia)

# Enable Pulsar geo-replication
# Configure ClickHouse distributed tables
# Use Route53 for global load balancing

πŸ“š Resources

πŸ’¬ Conclusion

You now have an enterprise-grade, production-ready streaming platform processing 1 million events per second on AWS! This setup demonstrates real-world architecture patterns used by Fortune 500 companies processing billions of events per day.

Key Achievements:

  • πŸš€ 1M events/sec throughput with room to scale to 2M+
  • ⚑ Sub-second latency end-to-end
  • πŸ’ͺ Enterprise HA with multi-AZ and auto-recovery
  • πŸ’° Cost-optimized at $24,592/month (with reserved instances)
  • πŸ”’ Production-secure with encryption and compliance
  • πŸ“Š Observable with comprehensive monitoring

This platform can handle:

  • Black Friday e-commerce traffic (millions of orders/hour)
  • Global payment processing (thousands of transactions/sec)
  • IoT fleets (millions of devices sending data)
  • Real-time gaming analytics (millions of player events)
  • Financial market data (high-frequency trading)

Enterprise benefits:

  • NVMe storage for ultra-low latency message persistence
  • High-performance instances optimized for streaming workloads
  • AVRO schema optimization for efficient serialization at scale
  • Multi-AZ deployment ensuring 99.95%+ availability
  • Exactly-once processing guarantees for financial-grade accuracy

What enterprise use case would you build on this platform? Share in the comments! πŸ‘‡

Building enterprise data platforms? Follow me for deep dives on real-time streaming, cloud architecture, and production system design!

Next in the series: “Multi-Region Deployment – Global Real-Time Data Platform”

🌟 Enterprise Support

⭐ Production-tested – Handles 1M+ events/sec in real deployments

🏒 Enterprise-ready – Multi-AZ, HA, DR, compliance

πŸ“– Fully documented – Complete runbooks and guides

πŸ”§ Professional support – Available for production deployments

πŸ’Ό Consulting – Custom implementation and optimization

πŸ“Š Enterprise Performance Summary

Metric Value
Peak Throughput 1,000,000 events/sec
End-to-End Latency < 2 seconds (p99)
Monthly Cost $24,592 (reserved instances)
Availability 99.95% (Multi-AZ)
Data Retention 30 days (configurable)
Query Performance < 200ms (complex aggregations)
Scalability 250K β†’ 2M+ events/sec
Recovery Time < 1 hour (DR failover)

Tags: #aws #eks #enterprise #streaming #dataengineering #pulsar #flink #clickhouse #production #avro #realtimeanalytics #nvme

Similar Posts