Image

Guide to get started with Retrieval-Augmented Generation (RAG)

๐Ÿ”น What is RAG? (in simple words)

Retrieval-Augmented Generation (RAG) combines:

  • Search (Retrieval) โ†’ find relevant information from your data
  • Generation โ†’ let an LLM generate answers using that data

๐Ÿ‘‰ Instead of guessing, the AI looks up facts first, then answers.

๐Ÿง  Why RAG is important

  • Reduces hallucinations
  • Answers from your own data (PDFs, docs, DBs, APIs)
  • Keeps data up-to-date (no retraining needed)
  • Perfect for chatbots, internal tools, search, Q&A

๐Ÿงฉ RAG Architecture (high level)

Image

Image

Image

Image

Flow:

  1. User asks a question
  2. Relevant documents are retrieved
  3. Retrieved context is sent to LLM
  4. LLM generates an answer grounded in data

๐Ÿ› ๏ธ Core Components of RAG

1๏ธโƒฃ Data Source

  • PDFs
  • Word files
  • Markdown
  • Databases
  • APIs
  • Websites

2๏ธโƒฃ Embeddings

Text โ†’ numerical vectors for similarity search
Popular models:

  • OpenAI embeddings
  • SentenceTransformers

3๏ธโƒฃ Vector Database

Stores embeddings for fast search:

  • FAISS (local)
  • Pinecone
  • Weaviate
  • Chroma

4๏ธโƒฃ LLM (Generator)

Examples:

  • GPT-4 / GPT-4o
  • Claude
  • Llama

โš™๏ธ Minimal RAG Setup (Beginner)

Step 1: Install dependencies

pip install langchain faiss-cpu openai tiktoken

Step 2: Load & embed documents

from langchain.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS

loader = TextLoader("data.txt")
docs = loader.load()

embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(docs, embeddings)

Step 3: Retrieve + generate answer

query = "What is RAG?"
docs = db.similarity_search(query)

from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI()

response = llm.predict(
    f"Answer using this context:n{docs}nnQuestion:{query}"
)

print(response)

๐ŸŽ‰ Thatโ€™s a working RAG system

๐Ÿงช What RAG is used for (real examples)

  • ๐Ÿ“„ PDF Chatbots
  • ๐Ÿข Internal company knowledge base
  • ๐Ÿง‘โ€โš–๏ธ Legal document search
  • ๐Ÿฉบ Medical guidelines assistant
  • ๐Ÿ’ป Developer documentation bots

โš ๏ธ Common beginner mistakes

โŒ Stuffing too much text into prompt
โŒ Not chunking documents
โŒ Using wrong chunk size
โŒ Skipping metadata
โŒ Expecting RAG to โ€œreasonโ€ without good data

โœ… Best practices (Day-1)

  • Chunk size: 500โ€“1000 tokens
  • Add source citations
  • Use top-k retrieval (k=3โ€“5)
  • Keep prompts explicit: โ€œAnswer only from contextโ€

๐Ÿš€ Next steps (recommended)

  • Add document chunking
  • Use metadata filtering
  • Add citations
  • Use hybrid search (keyword + vector)
  • Add reranking

๐Ÿง  When NOT to use RAG

  • Math-heavy reasoning
  • Code generation without context
  • Creative writing
  • Pure chatbots

AI with graphs 15 april conf

https://neo4j.registration.goldcast.io/events/d11441d0-5a74-463d-ab1d-22f03c939c3c
https://sessionize.com/nodesai2026/

Similar Posts